Cracking the code on spider silk

Researchers have cracked the code on spinning artificial spider silk using water and ambient temperatures. This could lead to huge breakthroughs for many different industries, most notably manufacturing. Spider silk has been one of nature's mysteries to scientists, eluding even the world's greatest teams.

Apparently, spider silk has been able to be manufactured artificially, but the process requires environmentally harmful chemicals and extremely high temperatures, making the process dangerous and costly. For the first time, a team out of Kyoto University has isolated a common spider protein, called MaSp2, and figured out how lowered Ph along with water and mechanical pressure causes the liquid to spontaneously form into the incredibly strong fiber we know as spider silk.

Spider silk is among the strongest fiber on earth, and typically far exceeds the tensile strength of any man-made fiber by orders of magnitude. One could say this fiber is indeed small but mighty.

One key component to the shapeshifting ability of spider protein is something call liquid-liquid phase separation. This happens often in cells, and is the phenomenon seen when droplets change size, shape, and density according to environmental conditions. The team first saw liquid-liquid phase separation when potassium phosphate was added to MaSp2, which caused the droplets to go from clusters to big, dense drops. After much trial and error, the team saw the fibers we all know and love (or hate), forming after the Ph was lowered to cause a more acidic environment. This points the way to how a common household bug can so uncommon. Reference: Kyoto University. (2020, November 30). How does the spider spin its self-assembled silk? Biochemists present a new model on how spider silk is made. ScienceDaily. Retrieved December 6, 2020 from

0 views0 comments

Recent Posts

See All

10/10/2021 I strongly believe that if we were to conduct a study about obedience similar to the one conducted by Stanley Milgram in 1963, we would get similar results. I believe that we would get simi

01/30/2022 The world is going through one of the biggest, most radical shifts it has seen in modern times. Many are calling this era definitive of a generation. It is said that each generation goes th

Jan 30, 2022 The “Baby’s First Years” Study by K. G. Noble, MD, PhD, Et. Al. is a primary research article. I determine this by noting several components of the article. These included: A detailed exp